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Abstract. A scattering approach for correlated one-dimensional systems is developed. The perfect contact
to charge reservoirs is encoded in time-dependent boundary conditions. The conductance matrix for an
arbitrary gated wire, respecting charge conservation, is expressed through a dynamic scattering matrix.
Two applications are developed. First, it is shown that the dc conductance is equal to e2/h for any
model with conserved total left- and right-moving charges. Second, the ac conductance matrix is explicitly
computated for the Tomonaga-Luttinger model (TLL).

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
72.10.-d Theory of electronic transport; scattering mechanisms – 73.23.-b Mesoscopic systems

Pioneered by Landauer[1], the scattering approach for
quantum transport has proven powerful in mesoscopic
physics. Nevertheless, it is restricted to non-interacting
systems, and to the stationary regime. There were formal
extensions to finite frequency transport based on a self-
consistent approach [2], or non-equilibrium techniques for
interacting dots [3], but these formalisms are difficult to
exploit. Proposed here is a different scattering approach
for linear ac transport through a strongly correlated, one-
dimensional wire in the low-energy regime. Charge reser-
voirs perfectly connected to the wire are accounted for
by appropriate boundary conditions. Coupling to a gate
is incorporated, ensuring charge conservation. The cor-
responding AC 3 × 3 conductance matrix is expressed
through a novel dynamic “scattering” matrix S(ω). Fur-
ther progress is then made in two cases. First, for any
model where the total charge for right- and left-moving
electrons is conserved, the transmission is shown to be
unity in the zero-frequency limit. This generalizes the
DC conductance result g = e2/h shown for a Tomonaga-
Luttinger liquid (TLL) [4–6] or for arbitrary finite-range
interactions [7]. A similar result was shown in reference [8]
through different hypothesis and arguments restricted to
the stationary regime, without describing the reservoir-
wire interface. Second, S(ω) is computed for the TLL
model, giving an AC conductance that depends on inter-
actions in contrast to the stationary regime.

Without connecting one-dimensional leads to an inter-
acting wire, this work extends the concept introduced in
references [4,9,10] where reservoirs are accounted for by
the electrons they inject. The leads have served to define
the incident and transmitted electrons, different from the
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proper modes of the wire. For a TLL model, the same
conductance results were found by the author by com-
puting the current in response to an appropriate external
electric field [9,10]. More recently, they were confirmed
by Blanter et al. [11] through a self-consistent treatment
of interactions, justified in the absence of backscattering.
Other works based on the Kubo formula in a TLL with
leads found different results due to a different electric field
profile to which current is very sensitive [12].

An underlying hypothesis of Landauer’s approach for
noninteracting systems [1] is the ideal nature of the con-
tacts, ensuring that emerging electrons are absorbed with-
out reflection by the reservoirs [1]. Such a concept cannot
be extended to interacting systems [4,13,14]. Rather, in-
teractions give rise to collective excitations, or Laughlin
quasiparticles in edge states, that are different from the
electrons in the reservoirs. An emerging “quasiparticle”
undergoes a quasi-Andreev type reflection [4,9,10,15] at
a perfect contact with a reservoir, and this is a key point.

This paper is mainly concerned with systems con-
nected locally to reservoirs, such as quantum wires, or
nanotubes; edge states couple differently to reservoirs [14].

Consider an arbitrary one-dimensional finite wire delim-
ited by [−a, a], whose length is

L = 2a.

The long wavelength part of the electronic density can
be decomposed into right and left-moving electron densi-
ties [16] ρ+ and ρ− including implicitly the zero modes,
ρ = ρ+ + ρ− where spin is ignored for simplicity. For
r = ±, the boson field Φr defined by ρr = −∂xΦr/2π
is the canonical conjugate to rρr (Kac-Moody algebra).
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Fig. 1. A gated wire perfectly connected to charge reser-
voirs with time-dependent electrochemical potential µ1,2(t) =
eiωtµ1,2(ω). The boundary conditions apply in the presence of
arbitrary backscattering inside the wire.

The kinetic Hamiltonian is Hkin =
∫ a
−a hvF(ρ2

+ + ρ2
−)/2.

Any interaction HamiltonianHint either between electrons
or with impurities can be expressed as a functional of
Φ+, Φ−, thus the total Hamiltonian,

H = Hkin +Hint + eVgateQ = H(ρ+, ρ−), (1)

is a functional of ρ±. Coupling to a gate is incorporated,
and Q =

∫ a
−a ρ(x).

The current field j(x) can be expressed independently
of the dynamics, in or out-of-equilibrium. For this, the
Hamiltonian H(A) in the presence of a vector potential A,
is used:

j(x) = − δH(A)

δA(x)

∣∣∣∣
A=0

. (2)

A can be absorbed by a gauge transformation of the right
and left-going fermion fields, Ψr ∼ eirΦr for r = ± [16].
This is accomplished by the substitution

Φr(x)→ Φr(x)− re

~

∫ x

A(x′)dx′.

Taking the spatial derivative, one obtains H(A) as

H(A) = H
(
ρ+ +

e

h
A, ρ− −

e

h
A
)
.

Differentiating with respect to A yields [17]

j(x) =
e

h
[µ+(x)− µ−(x)] , (3)

where µr for r = ± are operators that play a central role:

µr(x) =
δH

δρr(x)
= hvFρr +

δHint

δρr(x)
+ eVgate. (4)

Also of use will be their average,

µ(x) =
∂H

δρ(x)
=

1
2

[µ+(x) + µ−(x)] . (5)

One can think of the expectation value of µ+(x) as the
energy required to add a right-going electron at x. It in-
cludes the local Fermi energy hvFρ+(x), the interaction
energy, and the gate potential that shifts the bottom band.
In some sense, it is a local electro-chemical potential for
right-going electrons. Consider now a typical transport
measurement, where one connects perfectly the wire at
±a to charge reservoirs (see Fig. 1). Spatial and tempo-
ral structure on the scale of λF (Friedel oscillations) are
ignored. The left (right) reservoir injects bare right (left)-
going electrons with a well defined electro-chemical poten-
tial µ1 (µ2). At the contacts where both incident fluxes

impinge, the energy is conserved in the absence of any
dissipation processes. Thus the field µ+(−a, t) [µ−(a, t)]
is required to be pinned to µ1 [µ2] at any time. Extending
this condition to alternative regimes, one has:

µ+(−a, t) = µ1(t)
µ−(a, t) = µ2(t). (6)

Without interactions near the contacts, µ±(∓a, t) =
hvFρ±(∓a, t)+eVgate(t); equation (6) imposes the density
for incident electrons, and generalizes the Landauer con-
cept to AC transport with arbitrary backscattering. But
in the presence of interactions, µ± depend on both ρ+

and ρ−, thus the density for incident electrons is not im-
posed (in contradiction with Ref. [19]). Rather, electrons
are partially reflected, giving rise to a contact resistance.
Indeed, equation (6) leads to a discontinuous local elec-
trostatic potential Vloc. eVloc follows the electro-chemical
potential on the reservoir side, while

eVloc(x) =
δ[H −Hkin]

δρ(x)
= µ(x) − hvF

2
ρ(x) (7)

on the interacting side [7,10]. On the right hand side, µ(x)
is given by equation (5), and is a kind of local electro-
chemical potential for both carriers [7]. This clarifies a
confusing point in the self-consistent treatment of interac-
tions in higher-dimensional systems, where the continuity
of Vloc is expected, even though not implemented in the
results. It would be interesting to define and then verify
analogous conditions to equation (6). We have to stress
however that no use of Vloc neither self consistent argu-
ments is made here, even to ensure charge conservation.

In the sequel, I switch to the Fourier transform of ex-
pectation values in a time-dependent ground state, let-
ting ω the external frequency. Time variation has to be
slow enough so that the reservoirs are driven adiabati-
cally through a sequence of equilibrium states with well
defined time-dependent electro-chemical potential. Thus
electrons must have enough time to adjust their average
energy to a new value of the chemical potential during
one cycle, thus ωτin � 1, where τin is the time equilibra-
tion in the reservoirs. In addition, such condition ensures
that the transition region between the reservoirs and the
wire, of length L′, can be considered as local; this is be-
cause L′ does not exceed vFτin, thus ω � τ−1

in < vF/L
′.

Note that for coherent transport through the wire, we have
L� vFτin, thus the limit τ−1

in is lower than vF/L.
The AC conductance matrix G3(ω) can indeed be ex-

pressed formally for arbitrary higher frequencies, ω � EF,
which is the unique limitation arising from the long wave-
length models; the low frequency regime will be specified
afterwards. G3(ω) is a 3 × 3 matrix with gαβ = δIα/δVβ
where V1,2 = µ1,2/e, V3 = Vgate, I1,2 = ∓j(∓a, ω) and
I3 the gate current. A complete description with all the
surrounding three-dimensional environment would be too
complex. Instead, assume that all the electric field lines
emerging from the wire end up on the gate, thus the lat-
ter carries an opposite charge to that on the wire Q(ω).
This ensures Kirchoff’s law,

∑
α Iα = 0 because, using
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the continuity equation,

I3(ω) = −ieωQ(ω) =
∫ a

−a
iωeρ(x, ω) (8)

= −
∫ a

−a
∂xj(x, ω) = −I1(ω)− I2(ω).

On the other hand, Vgate(ω) appears as a reference poten-
tial in equations (4,6). Thus it can be shown that the two
constraints on the conductance matrix [2]∑

α

gαβ = 0 =
∑
β

gαβ, (9)

are ensured. Next focus on the first 2× 2 block of G3(ω)
denoted G2(ω). Using equations (6, 3),

I1 = −j(−a, ω) =
e

h
[µ−(−a, ω)− µ1(ω)] ,

I2 = j(+a, ω) =
e

h
[µ+(−a, ω)− µ2(ω)] . (10)

In order to express Iα to linear order in µ1,2 =
µ±(∓a, ω), it is sufficient to retain the linear dependence
of µ±(±a, ω), determined by some matrix S(ω),(

µ−(−a, ω)
µ+(a, ω)

)
= S(ω)

(
µ+(−a, ω)
µ−(a, ω)

)
. (11)

Combined with equation (10), this gives an interesting
relation,

G2(ω) =
e2

h
[S(ω)− I] . (12)

If the elements of S(ω) are denoted as follows

S(ω) =
(
R(ω) T ′(ω)
T (ω) R′(ω)

)
, (13)

then T (ω) [R(ω)] can be viewed as the total dynamic
transmission [reflection] coefficient for the incident flux
from the left to the right reservoir (into the left reservoir).
T ′ and R′ play the same role for the right reservoir. Nev-
ertheless, important differences from the usual scattering
approach should be stressed. The elements of S(ω) deter-
mine directly the current or density, but are nonetheless
complex numbers. S(ω) is not unitary, and in general not
symmetric unless there is a perfect reflection symmetry.
In addition, T (ω) + R(ω) 6= 1, and current conservation
is ensured by the gate (Eq. (8)). The total conductance
matrix can now be expressed, using equation (12), and
letting the ω dependence be implicit:

G3 =
e2

h

 R− 1 T ′ 1−R− T ′
T R′ − 1 1−R′ − T

1−R− T 1−R′−T ′ R+R′+T+T ′−2


(14)

At zero frequency, S(0) becomes real symmetric, and
T (0)+R(0) = T ′(0)+R′(0) = 1, but R(0) can be negative.
The DC conductance is given by the stationary transmis-
sion,

g = g12 = −g11 = T (0)
e2

h
· (15)

As a first application of these boundary conditions,
consider now a model where both total charges

Q± =
∫ a

−a
ρ±(x)dx

are conserved,
[Q±,H] = 0. (16)

Then it is shown here that T (0) = 1 [18]. In the Heisenberg
representation, an operator O evolves according to

i~
dO
dt

= [H,O] + i~
∂O

∂t
,

but ∂O/∂t = 0 in the stationary regime. For r = ±, Φr
is the canonical conjugate to ρr, thus dΦr/dt = −rµr/~
(Eq. (4)). Then

h
dρr
dt

= r∂xµr

is an equation for field operators that one can integrate
between −a and a to get, using equation (16),

µr(a, t)− µr(−a, t) = rh
dQr
dt

= 0. (17)

On the other hand, the field µ+(−a, t) cannot fluctuate
but is equal to µ1 (Eq. (6)), thus

µ+(a, t) = µ1

at all times. Similarly, µ−(−a, t) = µ−(a, t) = µ2. Thus
T (0) = 1 and R(0) = 0 (see Eq. (11)), and the DC con-
ductance is equal to

g =
e2

h

(see Eq. (15) or simply Eq. (3)).
A second application is to investigate dynamic trans-

port in the simplest model (verifying Eq. (16)): the TLL
model. The matrix S(ω) in equation (11) can be computed
in an instructive way, through a “transfer” matrix A(ω)
such that

µ(a, ω) = A(ω)µ(−a, ω), (18)

where µ stands for the vector (µ+, µ−). For this, it is
convenient to use the right- and left-propagating current
modes j±, corresponding to up and down edge-excitations
in a Hall bar [20], that can be denoted “quasiparticles”.
The Hamiltonian is now given by

H =
∫ a

−a
dx

h

2e2uK

(
j2
+ + j2

−
)

+ eVgateQ, (19)

where u and K are interaction parameters [16]. Without
interactions, j± = evFρ±, u = vF and K = 1. j± propa-
gate freely at the sound velocity u, thus

j(a, ω) = eiσzωtLj(−a, ω), (20)

where tL = L/u is the transit time of the wire and σz the
z Pauli matrix. On the other hand, j± are related to ρ±
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by simple diagonalization, but their relation to µ± is of
more use here:

j(x, ω) =
e

h
Mµ(x, ω)

M =
1

1 + γ

(
1 −γ
−γ 1

)
, (21)

where the coefficient γ is given by [4]

γ =
1−K
1 +K

· (22)

Then M−1 can be obtained from M by γ → −γ. Equa-
tions (21,20) yield the “transfer” matrix

A(ω) = M−1eiσzωtLM. (23)

This allows to deduce the scattering matrix S(ω) in equa-
tion (11), symmetric due to the mirror symmetry,

T (ω) = T ′(ω) = (1− γ)
e−iωtL + γeiωtL

e−iωtL − γ2eiωtL
, (24)

R(ω) = R′(ω) = γ
[
1− eiωtLT (ω)

]
. (25)

One can check that |Det S(ω)| = 1, a constraint that
can be shown to hold for any quadratic Hamiltonian with
time-reversal symmetry. Note that S(ω) depends solely on
the intrinsic properties of the TLL model; the boundary
conditions (6) allow to express the AC conductance ma-
trix through S(ω), equation (14). I now analyze in more
details the capacitive effects. The gate conductance is

g33(ω) = 2
e2

h
(1− γ)

1− eiωtL

1 + γeiωtL
. (26)

Thus the “electro-chemical” capacitance of the wire per
unit length with respect to the gate [10,11]

C = − lim
ω→0

[
g33(ω)

iωL

]
= 2

K

u

e2

h
, (27)

is proportional to the compressibility [16]. This result can
be checked by minimizing the zero mode contribution to
H (Eq. (19)) at fixed total current, thus by minimizing

hu

4LK
Q2 + eQVgate.

C results from two capacitors in series: its value without
interactions C0 = e2dn/dE = e2hvF/2, of purely kinetic
origin, and the “electrostatic” capacitance c, obtained by
evaluating equation (7) [7,11,21],

c = e
δρ

δVloc
=
e2

h

( u
K
− vF

)−1

. (28)

1
C

=
1
c

+
1
C0
. (29)

Interestingly, evaluating then differentiating equations
(7, 5) with respect to ρ allows to recover equation (29).
It is worth noting that

µ(x) =
e2

C
ρ(x) + eVgate, (30)

where C is given by equation (27), justifying its interpre-
tation as a local electrochemical potential for both carri-
ers in reference [7]. But measuring C gives the ratio K/u,
leaving both u and K unknown. In the regime ωtL � 1,
the non-dissipative part [10,11] of g33(ω) (Eq. (26)) is

−Im[g33(ω)] ' X − X3

16

(
1− 1

3K2

)
, (31)

with X = CLω. In reference [11], the rapid variation on
K of 1 − 1/3K2 was proposed as a way to measure K.
An alternative strategy consists in measuring the lead-
ing term X on the right hand side of equation (31),
then the subleading term that one divides by X3 to in-
fer (1 − 1/3K2)/16, thus K. u can be then determined
from C, equation (27).

The underlying dynamics are now interpreted. Equa-
tion (21) is equivalent to(

eµ−(x, ω)/h
j+(x, ω)

)
=
(

γ 1 + γ
1− γ −γ

)(
eµ+(x, ω)/h
j−(x, ω)

)
,

(32)
so that the matrix on the right hand side can be viewed as
a local “scattering” matrix [4,9]. Let us focus for instance
on x = −a where µ+(−a, ω) = µ1(ω). When no charge
is incident from the left reservoir, i.e. µ1 = 0, then j+ =
−γj−; −γ is the reflection coefficient for a “quasiparticle”
incident on the contact. For repulsive interactions, K < 1,
thus −γ < 0; a “quasi-hole” is reflected, in analogy with
Andreev reflection [4,9,10,15]. If no “quasiparticle” comes
from the right, i.e. j− = 0, then one finds

j+ =
e

h
(1− γ)µ1, (33)

and thus 1 − γ = 2K/(1 + K) is the transmission coef-
ficient for the incident flux from the reservoir. T (ω) and
R(ω) result from the multiple reflections on the contacts,
in analogy with a Fabry-Perot resonator [4,22]. They
have resonances at the collective modes of the finite wire
ωn = uq for q = 2nπ/2a, at which T = 1 and R = 0.
Note that since j = j+ − j−, equation (33) obtained for
j− = 0 yields the current at the interface of a semi-infinite
TLL and a Fermi liquid, the DC conductance becomes
ga = (e2/h)2K/(1 +K) [4,9,14].

Indeed, the above scattering matrices have been en-
countered in references [4,9,10] (though their present in-
terpretation was not given) where a TLL is connected
perfectly to noninteracting leads at ±a. There, the cor-
responding Hamiltonian has space dependent interaction
parameters that coincide with their noninteracting values
for |x| > a, u = vF and K = 1. This connexion is clarified
in the sequel.

If an electron impinges at t = 0 on −a, i.e. ρ+(x, t =
0) = δ(x + a), the transmitted (respectively reflected)
charge to a (at −a) at time t, i.e. ρ+(a, t) (ρ−(−a, t))
is given by the function M++(a,−a, t) (M−+(−a,−a, t))
whose Fourier transform can be shown to coincide exactly
with T (ω) (respectively R(ω)) in equation (32),

T (ω) =
∫

dteiωtM++(−a, a, t) (34)
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R(ω) =
∫

dteiωtM−+(−a,−a, t).

In addition, these functions determine the non local dy-
namic conductivity at the contacts [4,9],

σ(a,−a, ω) =
e2

h
T (ω)

σ(a, a, ω) =
e2

h
[1−R(ω)]. (35)

The reservoirs can be modeled by an external potential
that drops only at the contacts [9,10], so that, taking into
account the constant gate potential in [−a, a],

E(x, ω) = [V1 − Vgate] δ(x+ a)− [V2 − Vgate] δ(x− a).

Then using j(x, ω) =
∫
σ(x, y, ω)E(y, ω)dy, one gets

j(±a, ω) = σ(a,∓a, ω) [V1,2(ω)− Vgate(ω)] ,

leading to the same G3(ω) (Eq. (14)) by use of equations
(35, 8) [9,10].

But this is not a pure coincidence. The action be-
ing quadratic, the ground state properties are given ex-
actly by minimizing it. Letting the ω dependence im-
plicit, the equation of motion thus obtained imposes the
continuity [4,7] of both j = e [µ+ − µ−] /h and that of
µ = (µ++µ−)/2, equation (5) (expressed through Eq. (30)
in the TLL). Thus both µ+ and µ− are continuous. On
the other hand, for any |x| > a, µ±(x) = hvFρ±(x) (see
Eq. (4)). The left reservoir injects electrons with den-
sity ρ+(−a(−), ω) = µ1(ω)/hvF on the noninteracting lead
side, thus µ+(−a(−), ω) = µ1(ω). This fixes the continuous
field µ+ on the interacting side, µ+(−a(+), ω) = µ1(ω),
which is exactly equation (6). Similar reasoning holds sym-
metrically for the right reservoir. Also µ−/h has to be
continuous at −a, thus it is equal to vFρ−, the reflected
current. All the analysis of the pure TLL connected to
leads can be extended to an arbitrary quadratic Hamilto-
nian, for instance describing finite-range interactions, but
it is not clear whether it holds more generally. The role
of backscattering in a TLL connected to leads [9,23,10]
was found to be controlled by the Fabry-Perot dynamics
recovered here by using equation (6), but the equivalence
has to be checked and might be limited to linear trans-
port. The boundary conditions (6) have the advantage to
hold for any Hamiltonian in the low energy sector, and
offer possibilities for future studies. One has to reformu-
late the bosonisation procedure to compute the correla-
tion functions. Implementing equation (6) in a path inte-
gral formalism would give access to the nonlinear regime
and current fluctuations. Conceptually, the scattering ap-
proach presented here can be extended to situations where
linear response theory fails, and can be generalized to edge
states in the fractional regime.

I am indebted to T. Martin for reading the manuscript and for
useful criticism. I would like to acknowledge fruitful discussions
with A. Alekseev, Y. Blanter, D. Bernard, D. C. Glattli, T.
Jolicoeur, and H. J. Schulz.

Note added in proof

In a recent erratum [24], Egger and Grabert modified
their boundary conditions for the TLL [19] by using self-
consistent arguments [21]. Their corrected results agree
with reference [4] and therefore with its present general-
ization.
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